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J. Phys. A: Math. Gen. 19 (1986) 669-682. Printed in Great Britain 

False time-reversal violation and energy level statistics: the role 
of anti-unitary symmetry 

M Robnik and M V Berry 
H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 tTL, UK 

Received 11. June 1985 

Abstract. We extend the classification of symmetries necessary to predict the universality 
class of spectral fluctuations of quantal systems whose classical motion is chaotic, by 
explaining that a system with neither time-reversal symmetry (7) nor geometric symmetry 
may display the spectral statistics of the Gaussian orthogonal ensemble (GOE), rather than 
those of the Gaussian unitary ensemble (GUE), provided it possesses instead some combina- 
tion of symmetries which includes T. Such combinations constitute invariance under 
anti-unitary transformations (whose classical analogue we call anticanonical). For a particle 
in a magnetic field B plus scalar potential V, an example is Ts, where S, is a mirror 
reflection under which B and V are invariant. We illustrate this numerically for a single 
flux line in a hard-walled enclosure (Aharonov-Bohm quantum billiards), which also 
provides an example of an anti-unitary symmetry of non-geometrical origin; the spectral 
fluctuations are, as predicted, GOE rather than CUE. 

1. Introduction 

It is now firmly established that the local statistics of energy levels (spectral fluctuations) 
of classically chaotic quantum systems are the same as the statistics of large random 
matrices. (Porter (1965) gives a collection of papers about random-matrix theory; 
computations indicating the applicability of this theory to quantal systems whose 
classical motion is chaotic are reviewed by Bohigas and Giannoni (1984); the reasons 
for this applicability are discussed in theoretical papers by Pechukas (1983), Berry 
(1985) and Yukawa (1985).) 

Spectral fluctuations fall into two universality classes, represented by different 
matrix ensembles; both apply only to systems without purely geometric symmetry, or 
if such symmetry is present, to level sequences of states in the same symmetry class. 
The first spectral universality class is that of the Gaussian orthogonal ensemble (GOE) 
of random real symmetric matrices; it applies to systems possessing time-reversal 
symmetry ( T ) ,  and clear numerical evidence was presented by Bohigas et al (1984). 
The second spectral universality class is that of the Gaussian unitary ensemble (GUE) 
of random complex Hermitian matrices; it has been the conventional wisdom that this 
applies to systems without T, and clear numerical evidence was presented by Berry 
and Robnik (1985) and Seligman and Verbaarschot (1985). 

Our purpose here is to point out that this conventional wisdom is not always correct. 
We demonstrate theoretically, and with examples, that there exist systems (indeed 
commonly encountered ones) whose dynamics are invariant neither under the T 
operation nor under any geometric symmetry operation, but for which non-trivial 
representations can be found in which the Hamiltonian matrix elements are real, so 
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670 M Robnik and M V Berry 

that GOE statistics apply, rather than CUE statistics. This phenomenon, which we call 
false T violation, arises when the system possesses invariance under a combination of 
T and some other symmetry (which may be geometric-for example, a reflection-but 
may be of a dynamical nature). In quantum mechanics such symmetries are anti-unitary, 
and in § 2 we explain how they can give rise to real Hamiltonians. The natural example, 
with which we illustrate these ideas, is that of a charged particle in external magnetic 
and scalar fields; we describe this in § 3, where we also introduce the classical analogues 
of anti-unitary symmetries, which we call anticanonical. In 5 4, we present numerical 
results for the case where the magnetic field is concentrated into a single flux line and 
the scalar field is the repulsive potential of a hard-walled enclosure (the Aharonov- 
Bohm quantum billiard, see Berry and Robnik (1986)), showing how anti-unitary 
symmetry can give rise to GOE spectral statistics even though T is violated. 

In this as in all applications of random-matrix theory, we are predicting that the 
spectral statistics of an individual system will be the same as those averaged over an 
ensemble (GOE or GUE)  of systems. The status of such predictions is discussed in 0 5. 

To avoid confusion, we emphasise that here we are concerned only with systems 
whose classical motion is chaotic, that is, ergodic with all closed orbits unstable. 
Different spectral statistics occur for completely integrable systems (Berry and Tabor 
1977) or for the generic case of systems whose motion is between the integrable and 
chaotic extremes (Robnik 1984, Meyer er al 1984, Seligman et al 1984, 1985, Berry 
and Robnik 1984). 

2. Anti-unitary symmetry and real representations 

Invariance under time reversal T is a particular case of iryariance of the Hamiltonian 
operator fi under the action of an anti-unitary operator A. The general theory of such 
operators was given by Wigner (1959), Dyson (1962), Bargmann (1964) and Porter 
(1965, pp 2-87); here we repeat only the essential facts. 

Any A ca! be expressed as the successive application of the operator of complex 
conjugation K ,  and a unitary operator 0, i.e. 

A= fii. (1) 

A(al4)+ b l 4 ) )  = U * A i / $ ) +  b * A / d ) .  

c'W&cl, = W)*. (3)  

Q~ = AQA-' = UKQ( UK ) - I  = UKQK-' 0-1 = CO* 0' 

It follows that A is anti-linear: for any states I$), 14) and any complex numbers a, b 

(2) 

Moreover, A preserves the transition probability between any two states, by converting 
the transition amplitude to its complex conjugate, that is 

This property deCn5s anti-unitaritl; with an appropriate definition of the anti-adjoint 
it can be written AtA = 1. Under A, any dynamical operator 6 transforms to dA where 

(4) 
where * denotes complex conjugation. Anti-unitary symmetry (A) requires dA = d. 
Anti-unitary operators do not possess eigenvalues; therefore the existence of A does 
not imply the partitioning of energy eigenstates into different symmetry cAasses. 

The most familiar anti-unitary operaty is the time-reversal operator T. We adopt 
the conventional view that the effect of T, classically and quantally, is to reverse all 

A A A A  A A A  A A  A A A A  
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momenta. It then follows that in the position representation fi = 1 in ( l ) ,  i.e. f = k, 
while in the momentumJepresentation fi reverses the 'coordinate' p. This view is not 
quite correct, because T really corresponds to reversing velocities, which differ in a 
magnetic field from momenta by terms proportional to the vector potential (with a 
perverse choice of gauge this happens even in zero field). Nevertheless we adopt it 
because with aAnatural choice of gauge, which we discuss in 9 3, invariance or lack of 
invyiance of H under reversal of momenta really does imply the presence or absence 
of T respectively. 

Suppose now that A has an anti-unitary symmetry. Then any basis I+,,) which is 
A-adapted in the sense that 

A l + n ) =  I+,) (5) 

will be a basis in which the matrix elements of fi are real. The argument is very simple 
(Porter 1965, pp 2-87): 

(9 ,  I A I + n )  = ( A + m  IAf i I+n)*  (anti-unitarity) 

= I fi I&n>* ( A-symmetry) 

= ( + m  I AI +n)* (A-adapted basis). (6) 

Does an A-adapted basis exist? We cannot prove this for every anti-unitary sym- 
metry, but there are two important classes of A for which there is an abundance of 
A-adapted bases, indeed a continuous infinity of them. 

The first class is that for which 

A 2 =  1 (7) 

and there is no restriction on the fi in (1). Porter showsAhoy to construct A-adapted 
bases where (7) holds; he was thinking of the case A =  T, but we will apply his 
construction to a different example in 0 4. 

Our main concern will be with the second class, for which (7) need not hold but 
for which 

fi*= 1 (8) 
A A A *  

(!his does ;ot imply (1) because a2 = UKUK = fifi* which in general equals neither 
UU' nor U 2 ) .  Then U has eigenvalues +1 and -1, and correspondingly, eigenstates 
which are even or odd. To construct an A-adapted basis, the first step is to choose a 
representation (e.g. position) and take any complete set of functions {bn} with the 
property that in this represent:tion they are all real. Next, we construct the states 
which are even or odd under U as follows: 

We assume that 4; are real; this will be the case (in position representation) when fi 
describes a geometric operation. Finally, we form the combinations 

+; = 4; * i4;. 

A+: = UK+: = fi4: 7 i $4 ; = 4: * i 4 ; = 4:. 

(11) 

These functions form the A-adapted basis, because ( l ) ,  (10) and the reality of 4; give 
A A  

(12) 
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Obviously there is an infinity of these bases, corresponding to different choices of {4"} .  
Moreover, as can easily be shown, transformation matrices between any two such bases 
are real, that is, orthogonal. 

Thus, whenever a system is not invariant under T but is invariant under some other 
A in one of these two classes, we have a case of false T violation and predict that its 
spectrum will show GOE, rather than CUE, fluctuations. 

3. Charged particle in a magnetic field: anticanonical symmetry 

A particle with mass rn and charge q moves in the r = ( x , y )  plane under the influence 
of a scalar potential V (  r )  and a magnetic field nB( r )  directed along the normal n to 
the plane. Its Hamiltonian, written classically but made quantal by replacing phase- 
space variables by operators, is 

H ( r , p )  = (1/2m) (P- q A ( r ) ) * +  V ( r )  

V A A ( r )  = n B ( r ) .  

(13) 

where the vector potential A satisfies 

(14) 

To resolve the gauge ambiguity we choose A ( r )  to (i) vanish when B does, (ii) 
maximise the symmetry of A relative to B ;  this will lead to a unique gauge in which 
physical symmetries are not obscured. Firstly, we choose a Coulomb gauge in which 
V 9 A = 0 by representing A in terms of a scalar function F (  r ) ,  that is 

A = V A ( n F (  r ) ) .  (15) 

A is thus directed along the contours of F, which by (14) must satisfy 

V'F( r )  = - B (  r ) .  (16) 

The maximally symmetric solution of this Poisson equation, involving the Green 
function with rotation symmetry, is 

F (  r )  = I 1 d2  r' B( r' )  In Ir - r ' / .  
27r 

This choice of F (  r )  vanishes when B does, and  has the same symmetry as B. (Sometimes 
it is possible and convenient to choose a gauge uniquely related to V (  r ) ,  as explained 
by Berry and  Robnik (1986) for the Aharonov-Bohm billiard, but this cannot be done 
in general and we d o  not consider it further here.) 

With this gauge, the systey has or  does not have the physical symmetry T if H is 
or is not invariant under the T operation defined as p reversal. When B = 0 then A = 0 
and H is symmetric in p and of course motion without a magnetic field is physically 
T-invariant; and, when B f O  then A Z O ,  H is not symmetric in p and motion in a 
magnetic field is neuer T-invariant. This is true classically, even for B constant and 
V zero in which case velocity reversal results not in the particle retracing its Larmor 
circle but gyrating in the same sense round a different circle, and afortiori in quantum 
mechanics. 

Now we discuss three important symmetry operations and their consequences for 
the classical o r  quantal Hamiltonian (13). These considerations generalise our pre- 
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liminary purely classical discussion (Robnik and  Berry 1986). The operations are 

Space inversion (parity)P: 

Time reversal T :  
Reflection Sx: 

( 4  Y ,  P x ,  P,) + (--% -Y, - P x ,  -P,) 
( 4  Y ,  P x ,  P,) + (x, Y ,  - P x ,  --PPI 

( 4  Y ,  P x ,  P,)+ (-x, Y ,  - P x ,  e"). (18)  

Whether H is invariant under these operations, or under combinations of them, 
depends on the symmetries of B ( r )  and V ( r ) .  The following four assertions follow 
easily from ( 1 3 ) ,  (15) and ( 1 7 ) :  

(i) H has P if both V and B have P 
(ii) H has T if B = O  
(iii) H has S, if B = 0 and  V has S,. Note that if E # 0 and  both E and V have 

S,, then H does not have &; instead, we have the following example of false 
T violation: 

(iv) H has TS, if both V and B have S,. 
QFantally, the symmetries (i) and (iii) are unitary, with opeTators !h:t we call 6 

and S. In contrast, (ii) and (iv) are anti-unitary, with operators T and S,T. Note that 
P 2  = Sf, = T 2  = ( S X T ) ' =  1. 

Classically, there is likewise an important distinction between (i) ,  (iii) and (ii), 
(iv), which is the classical analogue of the distinction between unitary and  anti-unitary 
symmetries. The phase-space transformations underlying (i) and  (iii) are canonical; 
they leave invariant both H and Hamilton's equations, the Poisson brackets remaining 
unchanged. They correspond to quantal unitary operators. On the other hand the 
transformations underlying (ii) and (iv), while leaving H invariant, change the sign 
of Hamilton's equations and the Poisson brackets, these sign changes being equivalent 
to time reversal. We call these transformations anticanonical; they correspond to 
quantal anti-unitary operators. 

The distinction can be expressed in another way: canonical symmetries estabish 
equivalence between forward orbits, whereas anticanonical symmetries relate a forward 
orbit to a backward orbit. This is illustrated in figure 1 in the case where B is uniform 
and V is a billiard potential, for the canonical symmetry P (figure l ( a ) )  and the 
anticanonical symmetry TS, (figure l ( b ) ) .  As we shall see in § 5 ,  this difference in the 

A A A  A A  

(01 ( b l  

Figure 1. Pairs of classical orbits in billiards with boundary JD containing a uniform 
magnetic field. In ( Q )  (canonical symmetry), dD has P but not S,; P correctly moves 
point A on orbit 1 to point B on orbit 2 and reverses the velocity vector. In ( b )  (anticanonical 
symmetry), dD has S, but not P; S, correctly moves point A on orbit 1 to point B on 
orbit 2, but in reversing the x component of velocity (broken) gives an orbit traversed in 
the wrong sense; application of 7 corrects this by reversing the velocity vector at B, thus 
showing that the dynamics has the (false time-reversal violation) symmetry TS,. 
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degeneracy structure of classical orbits has a striking effect on the distribution of 
quantal level spacings. Its effect on the spectral rigidity is much less marked (only a 
small asymptotic shift) because, according to the semiclassical theory (Berry 1985), 
degeneracy of closed orbits causes their contributions to add coherently, irrespective 
of the canonical or anticanonical nature of the symmetry responsible for the degeneracy. 

There is a vast class of systems corresponding to the case (iv) of false T violation, 
where H has neither T nor S,  but does have TS,. For all such systems we predict 
GOE spectral fluctuations provided the classical motion is chaotic. Important among 
these are atoms in strong uniform magnetic fields (Robnik (1981, 1982) has studied 
hydrogen), for which GOE statistics should apply to the subsets of levels with the same 
value of angular momentum about the symmetry axis, and the same symmetry under 
reflection about this axis and any perpendicular one. Another case of false T violation 
was found numerically by Seligman and Verbaarschot (1985) for a particle moving in 
smoothly inhomogeneous B and V. In the next section we present three examples 
designed to illustrate precisely the circumstances in which false T violation does or 
does not occur. 

4. The Aharonov-Bohm quantum billiard 

Following our recent work on this system (Berry and Robnik (1986) hereafter called 
ABQB) ,  we now concentrate the magnetic field into a single line of magnetic flux @ 
situated at what we define as the origin of the r plane, that is 

B( r )  = @ti( r ) ,  (19) 
and choose V (  r )  to vanish within the planar domain D (billiard table) and be infinitely 
repulsive on and outside the boundary a D which is chosen to give chaotic classical 
trajectories. In polar coordinates r = ( r ,  e) ,  the vector potential is, from (15) and (17) ,  

A ( r )  = ( @ / 2 v r ) u 0  (20) 
where u0 is the azimuthal unit vector. 

The quantal Hamiltonian (13) is now entirely kinetic, with the effect of V (  r )  being 
to make wavefunctions $ ( r )  vanish on aD. In addition, of course, + must be a 
single-valued function of r. In terms of the quantum frux parameter 

c u = q @ / h  (21) 
and apart from a factor h2/2m,  the Hamiltonian operator in position representation is 

A = lei2+ a 2 / r 2  - 2a i /  r2 .  (22) 
In this expression, i and i denote the linear and angular momentum operators, namely 

1 = -i alae.  (23) p* = -iv 
We now discuss five different cases depending on the value of (Y and the symmetry 

of aD. 

4.1. (Y = 0 and dD has no symmetry 

Here there is no magnetic field, so the system has T and this is its only symmetry. 
The spectral statistics are those of the GOE and this has already been demonstrated in 
ABQB. 
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4.2. 2a is a non-zero integer and dD has no symmetry 

cor this case too, as we demonstrated in ABQB, there exists a transformation making 
H real and because non-zero a means non-zero field, this corresponds to false T 
violation. To explain this using the machinery of § 2, we first write (22) in the form 

Lack of T is obvious from (4), because the time-reversed operator is (with f as 2, 
i.e. ii = 1 in (1)) 

A = exp(iae)lp*I2 exp(-iae). (24) 

AT = A *  = exp(-iae)lp*I2 exp(ia0) z A. 

i = exp(2 iae ) i  (26) 

AA = exp(2iae)Ar exp(-2iae) 

(25) 
If we now choose the anti-unitary operator 

(which has the form ( l ) ) ,  the transformed Hamiltonian is, from (4), 

= exp(2iae)(exp(-iae)Ip(Z exp(ia6)) exp(-2iae) 

= exp(iae)lp12 exp(-iae) = A. (27) 
We now seem to have proved too much, by finding an A under which A is invariant 
for all a ! However, this ignores the fact that the specification of a Hamiltonian consists 
not only of the expression of the energy in terms of dynamical operators, but must 
include any conditions that the wavefunction $( r, 0 )  satisfies. Therefore, we must 
check that the action of A leaves these conditions invariant. Using (26) we obtain the 
transformed wavefunction as 

&(r, e )  = exp(2iae)+*(r, e). (28) 
Considering now circuits of the flux line ( e +  8+2.rr), we see that a destroys the 
single-valuedness of $ unless 2a  is an integer. Only in this case does (26) lead to an 
anti-unitary symmetry of A. 

This case of false T violation, of dynamical rather than geometrical origin, corre- 
sponds to the first class considered in § 2, where (7 )  is satisfied but (8) is not. It is 
instructive to form an A-adapted basis by the method described by Porter (1965). We 
begin with the complete set of states 

4I = exp(il6) ( 1  any integer) (29) 
(we write only the angle dependence), and then form the combination 

+I = arc+, + = a,exp(ile) + aT exp[i(2a - /)e] ( 1 2 2 a )  (30) 
(the restriction on 1 is necessary to avoid redundancy, and the loss of information 
resulting from the missing 1 values is compecsated by the freedom of choice of the 
phases of the a,). It is easy to show that A+,:+, so that we do indeed have an 
A-adapted basis, giving real matrix elements of H and hence GOE spectral statistics. 
The set is complete and orthonormal if 2a  is an integer. One way to see how the 
functions (30) arise naturally is to write the complete wavefunction + ( r )  in terms of 
the free-space Aharonov-Bohm eigenfunctions (Olariu and Popescu 1985), namely 

m 

+ ( r )  = C c ~ l ~ - ~ ~ ( k r )  exp(il8) (31) 
I=-m 

(where the J are Bessel functions and k=[(2mE)”2]/h) ,  and note that when 2a  is 
an integer the terms 1 and -1 + 2a  have the same r dependence and can be amalgamated. 
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5 
Figure 2. 

4.3. 2a is not an integer and dD has no symmetry 

Here there is neither unitary nor anti-unitary symmetry and the spectral statistics are 
those of the GUE, as we have already demonstrated in ABQB. This is a case of genuine 
T violation. 

4.4. 2a is not an integer and dD has S, 

Here there is only the anti-unitary symmetry TS, (case (iv) of § 3), indicating false T 
violation of geometric ori in. Therefore, we predict GOE statistics. To demonstrate 
these we choose a = f ( / 5 - 1) (the golden flux) and aD as in figure 1( b ) ;  this is the 
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20 10 
L 

0 

Figure 2. Spectral statistics for Aharonov-Bohm quantum billiard with golden flux 
(I =+ ( 8 - 1 )  with the boundary aD given by (33) and shown in figure l ( b )  (the flux passes 
through the marked point), which has the mirror symmetry S,, but not P. ( a )  Level spacings 
distribution P(S), ( 6 )  cumulative level spacings distribution I,” dxP(x) ,  ( c )  spectral rigidity 
A ( L ) .  The full, broken and dotted curves give the theoretical predictions of the CUE, GOE 
and Poisson statistics respectively. 

image in the plane z = x + iy produced from the unit disc in the 5 plane by the quadratic 
conformal transformation 

z(5)=i(5+B12) ( B = 0 . 4 ) .  ( 3 2 )  

A complete description of our method of calculating eigenvalues with this boundary 
will be found in ABQB; also defined there are the spectral statistics we calculated with 
these eigenvalues, namely the level spacings distribution P(  S) and its integral 
50” dx P ( x ) ,  and the spectral rigidity A(L).  

Figure 2 shows the results. There is no doubt that the statistics are those of the 
GOE rather than the CUE (the deviation of A(L) from the GOE curve for large L is not 
unexpected because, as explained by Berry ( 1 9 8 9 ,  this lies beyond the range of spectral 
universality). 

4.5. 2a is not an integer and aD has P as its only symmetry 

Here, there is only the unitary symmetry P (case (i)  of 9 3) indicating a partition of 
the spectrum into two classes (even and odd under space inversion). For each separate 
class we predict CUE statistics because T is genuinely violated. For the complete 
spectral sequence, consisting of both classes of energy levels taken together, we predict 
the spectral statistics of two combined CUE sequences. To demonstrate these we again 
choose the golden flux a =$(a- l ) ,  but now take aD as in figure l ( a ) ;  this is the 
following quintic conformal transformation of the unit disc: 

z( 5 )  = 5 + Cl3  + iD l5  ( C  = 0.2, D = 0.05). ( 3 3 )  
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1.01,' ' ' ' " ' " ' ' " " " ' ' " ' ' " ' " ' 

1 .o 

- 
0.5 

*: 
m<- 

0 1 2 3 
5 

Figure 3. 

The combination of two identical spectral sequences was first considered by 
Gurevich and Pevsner (1956/7) (reprinted in Porter 1965). Their arguments give, for 
the level spacings distribution, PZGUE( S), produced by combining sequences with level 
spacings distributions P G U E (  S), 

PZGUE(S) = 2 ( d / W ( G ( S )  dG(S)ldS) (34) 

where 

r x  
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+ + ++I 
-. 

E ,  1 
0 10 20 

L 

Figure 3. As figure 2 but with the boundary aD given by (34) and shown in figure l (a ) ,  
which has the panty symmetry P but not S,. The chain curves give the theoretical predictions 
for two combined GUE spectra (equations (38) and (40)). 

The close approximation 

P G U E ( S )  -- (32/.rr2)S2 exp(-4S2/r)  (36) 

leads to an expression for the combined cumulative level spacing in terms of the 
complementary error function 

los dx PtGUE( x)  = 1 - 2[ ( S /  77) exp( -s2/ r) + ; erf( s/&)] 

Differentiation gives PZGUE( S ) .  In particular, 

P ( 0 )  = ;, dP(O)/dS = 0, d2P(0)/dS2 = 8/77'. (38) 

Figures 3(a)  and 3( b )  show P ( S )  and jt dxP(S)  respectively. It is clear that (37) 
and its derivative provide excellent descriptions of the data over the whole range of S. 

Because the rigidity is a quadratic functional of the level density, its value is simply 
additive for two independent spectral sequences. Thus 

AZGUE(L) = 2 A G U E ( L / 2 ) .  (39) 

The limiting forms 
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The rigidity data are shown in figure 3 ( c ) .  Evidently the agreement with AZGUE 

(equation (39)) is excellent. In particular, the rigidity is clearly different from that of 
the GOE, which has the same logarithmic term but whose asymptotic constant is 0.0547 
smaller. 

In two dimensions, P i s  equivalent to symmetry under rotation by T. More generally, 
invariance under rotation by 2 ~ /  n ( n  integer) is a unitary symmetry, and if the potential 
has no reflection symmetry then in a magnetic field there will be neither T nor any 
other anti-unitary symmetry, the spectrum being a combination of n CUE sequences. 

5. Discussion 

The principal conclusion of this work is a warning: before predicting that the statistics 
of the GUE will apply to the energy levels of a classically chaotic system with neither 
time reversal nor geometric symmetry, make sure that the system is not invariant under 
some combination of these symmetries. If it is, real representations of the Hamiltonian 
can be found, indicating GOE statistics. Such cases correspond to invariance under 
the action of anti-unitary operators (classically, anticanonical transformations), which 
we have shown to be the appropriate generalisation of time reversal. 

Finally, we must discuss the status of applications of random-matrix theory to 
predict the spectral statistics of individual systems, after all symmetries have been 
properly identified. We claim that such predictions, based on whether the Hamiltonian 
is real or complex, will be correct with probability one, but not with certainty. 

It is easy to give examples proving that the predictions will not always be correct. 
Observe that the Hamiltonian matrix of any system is real in its eigenbasis, whether 
the system has GOE, GUE or any other spectral statistics. Applying this to the case 
when the levels have GUE statistics, we can transform the eigenbasis by arbitrary 
orthogonal transformations into a continuous infinity of representations, in all of which 
the Hamiltonian is real; all these real matrices have the same, GUE, statistics. Con- 
versely, one may take a real Hamiltonian whose levels have GOE statistics and make 
arbitrary complex unitary transformations, thereby producing a continuous infinity of 
representations, in all of which the Hamiltonian is complex; all these complex matrices 
have the same, GOE, statistics. An a1ternati:e procedure for generating ‘wrong’ fluctu- 
ations is to begin with any Hamilt9nian yo and deform its spectrum by mapping it 
onto that of a new Hamiltonian H = f ( H o ) ;  if f is a sufficiently complicated (but 
smooth) function, any desired spectral statistics can be produced. For example, it has 
been suggested (Robnik 1985) that it could even be possible to construct integrable 
systems whose spectral statistics mimic those of chaotic ones; such special integrable 
systems would be obtained from truncated Birkhoff-Gustavson normal forms. 

However, these counterexamples to random-matrix predictions, although infinitely 
numerous, are non-generic: they constitute a set of measure zero. We know this from 
random-matrix theory, as will now be explained. The matrices with ‘wrong’ statistics 
are all included in the Gaussian ensembles: the GOE includes all those real matrices 
which have, individually, CUE statistics, and the GUE includes all those complex 
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matrices which have, individually, GOE statistics (as well as all the real symmetric 
matrices of the GOE). However, for infinite matrices, the Gaussian ensembles are 
ergodic (Pandey 1979): almost every individual matrix in each of these has the same 
statistics as the average over the whole ensemble. Therefore the exceptions do indeed 
have zero measure. 

Confidence in random-matrix predictions is further strengthened in this context of 
classically chaotic quantum systems by the realisation that spectral statistics must be 
calculated, in principle, using infinitely many levels, which for an individual system 
implies that the statistics are dominated by the semiclassical limit. For systems such 
as billiards (field-free or Aharonov-Bohm with fixed a )  the energy and R are related 
by scaling, and the semiclassical limit simply corresponds to fixing h and considering 
the whole spectrum. For non-scaling systems, where the classical dynamics is energy 
dependent, the statistics of levels corresponding to given classical mechanics at some 
fixed energy E must be calculated by choosing a fixed small energy range AE, centred 
on E, and letting h + 0, thus causing infinitely many levels to condense into this range. 
This eliminates the possibility of producing GOE or GUE statistics by a smooth h- 
independent mapping B = f (  Bo), because in the semiclassical limit, the transformation 
f becomes locally a simple multiplication by the constant factor df/dE and this does 
not affect the local structure of the spectrum. 

We conclude that failures of predictions of spectral statistics of classically chaotic 
quantum systems on the basis of random-matrix theory will be infinitely unlikely, 
provided all symmetries are correctly taken into account. This common-sense view is 
of course confirmed not only by the numerical calculations reported here, but also by 
computations carried out by us, and other people, for a variety of different systems. 
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